Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 607
Filtrar
1.
Huan Jing Ke Xue ; 45(5): 3069-3077, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629567

RESUMO

Microplastic pollution in the soil environment has received extensive attention, but the effects of different land use patterns on the sub-watershed scale on soil microplastic pollution are poorly understood. The Luoshijiang sub-watershed in the north of Erhai Lake was selected as the research object, and the characteristics of microplastic pollution in farmland, riparian zone, grassland, and woodland soils were analyzed. The pollution risks of microplastics in the four types of soil were assessed using the polymer risk index method, and the effects of land use patterns on the distribution and risk of microplastic pollution were further explored. The results showed that:① The abundance of microplastics in the soil of the Luoshijiang sub-watershed ranged from 220 to 1 900 n·kg-1, and the average abundance was (711 ± 55) n·kg-1. The main polymer types were polyester (PES, 32.52%) and polyethylene terephthalate (PET, 21.95%). The particle size of microplastics was concentrated in the range of 0.5-2 mm (61.89%). Fiber was the main shape of microplastics (>75%), and the dominant color was transparent (58.50%). ② Land use patterns determined the abundance and pollution characteristics of soil microplastics in the Luoshijiang sub-watershed. A significantly higher abundance of microplastics was found in the soil of farmland[(885 ± 95) n·kg-1] and riparian zone[(837 ± 155) n·kg-1], which had stronger intensities of human activity, than that in woodland soil[(491 ± 53) n·kg-1] (P<0.05). Film and fragment microplastics mainly occurred in farmland soil, which also had the largest number of polymer types and the most abundant colors. ③ The risk index level of microplastics (Level Ⅲ) in the soil of farmland was higher than that of the other three land use patterns (Level Ⅰ). This research indicated that the higher the intensity of human activities of a sub-watershed was, the more complex the occurrence characteristics of soil microplastics, the richer the types of polymers, and the higher the potential pollution risks would be. Therefore, it is necessary to strengthen the control of soil microplastic pollution in farmland.

2.
Inorg Chem ; 63(15): 6660-6673, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572776

RESUMO

Although being applied in various fields, white light emitting diodes (WLEDs) still have drawbacks that urgently need to be conquered: the luminescent intensity of commercial phosphors sharply decreases at working temperature. In this study, we calculated the forming energy of defects and confirmed that the VNa defect state can stably exist in ß-NaGdF4, by density functional theory (DFT) calculation. Furthermore, we predicted that the VNa vacancies would provide a zero thermal quenching (ZTQ) property for the ß-NaGdF4-based red-light phosphor. Then, a series of ß-NaGdF4:xEu3+ and ß-NaGdF4:0.25Eu3+,yYb3+ red-light phosphors were synthesized by the hydrothermal method. We found that ß-NaGdF4:0.25Eu3+ and ß-NaGdF4:0.25Eu3+,0.005Yb3+ phosphors possess ZTQ properties at a temperature range between 303-483 K and 303-523 K, respectively. The thermoluminescence (TL) spectra were employed to calculate the depth and density of the VNa vacancies in ß-NaGdF4:0.25Eu3+ and ß-NaGdF4:0.25Eu3+,0.005Yb3+. Combining the DFT calculation with characterization results of TL spectra, it is concluded that electrons stored in VNa vacancies are excited to the exited state of Eu3+ to compensate for the loss of Eu3+ luminescent intensity. This will lead to an increase of luminescent intensity at high temperatures and facilitate the samples to improve ZTQ properties. WLEDs were obtained with CRI = 83.0, 81.6 and CCT = 5393, 5149 K, respectively, when phosphors of ß-NaGdF4:0.25Eu3+ and ß-NaGdF4:0.25Eu3+,0.005Yb3+ were utilized as the red-light source. These results indicate that these two phosphors may become reliable red-light sources with high antithermal quenching properties for WLEDs.

3.
Aging (Albany NY) ; 162024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38637126

RESUMO

BACKGROUND: Globally, ischemic stroke (IS) is ranked as the second most prevailing cause of mortality and is considered lethal to human health. This study aimed to identify genes and pathways involved in the onset and progression of IS. METHODS: GSE16561 and GSE22255 were downloaded from the Gene Expression Omnibus (GEO) database, merged, and subjected to batch effect removal using the ComBat method. The limma package was employed to identify the differentially expressed genes (DEGs), followed by enrichment analysis and protein-protein interaction (PPI) network construction. Afterward, the cytoHubba plugin was utilized to screen the hub genes. Finally, a ROC curve was generated to investigate the diagnostic value of hub genes. Validation analysis through a series of experiments including qPCR, Western blotting, TUNEL, and flow cytometry was performed. RESULTS: The analysis incorporated 59 IS samples and 44 control samples, revealing 226 DEGs, of which 152 were up-regulated and 74 were down-regulated. These DEGs were revealed to be linked with the inflammatory and immune responses through enrichment analyses. Overall, the ROC analysis revealed the remarkable diagnostic potential of ITGAM and MMP9 for IS. Quantitative assessment of these genes showed significant overexpression in IS patients. ITGAM modulation influenced the secretion of critical inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, and had a distinct impact on neuronal apoptosis. CONCLUSIONS: The inflammation and immune response were identified as potential pathological mechanisms of IS by bioinformatics and experiments. In addition, ITGAM may be considered a potential therapeutic target for IS.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38518165

RESUMO

Objective: Ipsilateral multiple breast cancer is a unique situation in which multiple breast cancer lesions are present in the same or different quadrant of the breast. While current research on ipsilateral multiple breast cancer primarily focuses on its existence or heterogeneity, it is important to evaluatethe risk level stratification of heterogenous lesion and determine the intensity of anti-tumor treatments for every lesion, achieving a rational and personalized anti-cancer strategy. Case Description: We present a 55-year-old woman with a lump in the lateral quadrant of her left breast, who was diagnosed invasive breast cancer with a background of ductal carcinoma in situ in two lesions of the left breast. The immunohistochemistry examination revealed that the lateral cancer lesion was Luminal B subtype while the lower cancer lesion HER2 positive subtype. Aditionally, the axillary lymph node dissection and immunohistochemistry showed 7 positive lymph nodes originating from ER-positive lesion. After systemic imaging screening, the clinical TNM stage for ER positive subtype was III A and HER2 positive subtype I A. The discovery shifted the conventional understanding that HER2 positive subtype usually had a higher TNM stage than ER positive subtype under the premise of consistent tumor volume and treatment strategy should be readjusted to reduce over-treatment and the risk of recurrence for high-risk tumor. However, little is mentioned about the risk level stratification of foci in ipsilateral multiple breast cancer and its weight in treatment strategy in clinical guidelines for breast cancer. Conclusion: This case highlights the need for more evidence-based data to support risk-level stratification of heterogenous foci and treatment decisions for ipsilateral multiple breast cancer and challenges current clinical practice.

5.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38487847

RESUMO

Causal discovery is a powerful tool to disclose underlying structures by analyzing purely observational data. Genetic variants can provide useful complementary information for structure learning. Recently, Mendelian randomization (MR) studies have provided abundant marginal causal relationships of traits. Here, we propose a causal network pruning algorithm MRSL (MR-based structure learning algorithm) based on these marginal causal relationships. MRSL combines the graph theory with multivariable MR to learn the conditional causal structure using only genome-wide association analyses (GWAS) summary statistics. Specifically, MRSL utilizes topological sorting to improve the precision of structure learning. It proposes MR-separation instead of d-separation and three candidates of sufficient separating set for MR-separation. The results of simulations revealed that MRSL had up to 2-fold higher F1 score and 100 times faster computing time than other eight competitive methods. Furthermore, we applied MRSL to 26 biomarkers and 44 International Classification of Diseases 10 (ICD10)-defined diseases using GWAS summary data from UK Biobank. The results cover most of the expected causal links that have biological interpretations and several new links supported by clinical case reports or previous observational literatures.


Assuntos
Algoritmos , Estudo de Associação Genômica Ampla , Causalidade , Fenótipo , Transporte Proteico , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único
6.
J Virol ; 98(4): e0005124, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38466095

RESUMO

Avian metapneumovirus subgroup C (aMPV/C), an important pathogen causing acute respiratory infection in chickens and turkeys, contributes to substantial economic losses in the poultry industry worldwide. aMPV/C has been reported to induce autophagy, which is beneficial to virus replication. Sequestosome 1 (SQSTM1/P62), a selective autophagic receptor, plays a crucial role in viral replication by clearing ubiquitinated proteins. However, the relationship between SQSTM1-mediated selective autophagy and aMPV/C replication is unclear. In this study, we found that the expression of SQSTM1 negatively regulates aMPV/C replication by reducing viral protein expression and viral titers. Further studies revealed that the interaction between SQSTM1 and aMPV/C M2-2 protein is mediated via the Phox and Bem1 (PB1) domain of the former, which recognizes a ubiquitinated lysine at position 67 of the M2-2 protein, and finally degrades M2-2 via SQSTM1-mediated selective autophagy. Collectively, our results reveal that SQSTM1 degrades M2-2 via a process of selective autophagy to suppress aMPV/C replication, thereby providing novel insights for the prevention and control of aMPV/C infection.IMPORTANCEThe selective autophagy plays an important role in virus replication. As an emerging pathogen of avian respiratory virus, clarification of the effect of SQSTM1, a selective autophagic receptor, on aMPV/C replication in host cells enables us to better understand the viral pathogenesis. Previous study showed that aMPV/C infection reduced the SQSTM1 expression accompanied by virus proliferation, but the specific regulatory mechanism between them was still unclear. In this study, we demonstrated for the first time that SQSTM1 recognizes the 67th amino acid of M2-2 protein by the interaction between them, followed by M2-2 degradation via the SQSTM1-mediated selective autophagy, and finally inhibits aMPV/C replication. This information supplies the mechanism by which SQSTM1 negatively regulates viral replication, and provides new insights for preventing and controlling aMPV/C infection.


Assuntos
Metapneumovirus , Infecções por Paramyxoviridae , Doenças das Aves Domésticas , Animais , Proteínas Virais/genética , Galinhas , Proteína Sequestossoma-1/genética , Anticorpos Antivirais
7.
Theor Appl Genet ; 137(3): 69, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441650

RESUMO

KEY MESSAGE: Twenty-eight QTLs for LLS disease resistance were identified using an amphidiploid constructed mapping population, a favorable 530-kb chromosome segment derived from wild species contributes to the LLS resistance. Late leaf spot (LLS) is one of the major foliar diseases of peanut, causing serious yield loss and affecting the quality of kernel and forage. Some wild Arachis species possess higher resistance to LLS as compared with cultivated peanut; however, ploidy level differences restrict utilization of wild species. In this study, a synthetic amphidiploid (Ipadur) of wild peanuts with high LLS resistance was used to cross with Tifrunner to construct TI population. In total, 200 recombinant inbred lines were collected for whole-genome resequencing. A high-density bin-based genetic linkage map was constructed, which includes 4,809 bin markers with an average inter-bin distance of 0.43 cM. The recombination across cultivated and wild species was unevenly distributed, providing a novel recombination landscape for cultivated-wild Arachis species. Using phenotyping data collected across three environments, 28 QTLs for LLS disease resistance were identified, explaining 4.35-20.42% of phenotypic variation. The major QTL located on chromosome 14, qLLS14.1, could be consistently detected in 2021 Jiyang and 2022 Henan with 20.42% and 12.12% PVE, respectively. A favorable 530-kb chromosome segment derived from Ipadur was identified in the region of qLLS14.1, in which 23 disease resistance proteins were located and six of them showed significant sequence variations between Tifrunner and Ipadur. Allelic variation analysis indicating the 530-kb segment of wild species might contribute to the disease resistance of LLS. These associate genomic regions and candidate resistance genes are of great significance for peanut breeding programs for bringing durable resistance through pyramiding such multiple LLS resistance loci into peanut cultivars.


Assuntos
Arachis , Resistência à Doença , Arachis/genética , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Cromossomos
8.
Zhongguo Gu Shang ; 37(2): 159-65, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38425067

RESUMO

OBJECTIVE: To observe the residual of lumbago and leg pain with contained type (CT) and non-contained type (NCT) lumbar disc herniation (LDH) after transforaminal endoscopic treatment, and to explore the role of hypoxia-inducible factor-1α(HIF-1α) and transient receptor potential vanillate 1(TRPV1) pathway. METHODS: A total of 68 single-segment LDH patients were selected from July 2021 to October 2022, including 44 males and 24 females;aged 26 to 67 years old with an average of(43.63±11.94) years old;course of disease was 4 to 36 (18.91±10.34) months;body mass index was (24.45±4.00) kg·m-2;there were 7 cases of L3,4 segments, 32 cases of L4,5 segments, and 29 cases of L5S1 segments. All of them were performed with percutaneous intervertebral endoscopic extraction of nucleus pulposus and were divided into contained group(CT group) and non-contained group (NCT group) with 34 cases respectively according to the integrity of outer layer of fibrous annulus observed during operation. A total of 17 patients who underwent open surgery for scoliosis or vertebral fracture were selected as control group, including 12 males and 5 females;aged 21 to 65 years old with an average of (39.41±12.80) years old;body mass index was (24.86±4.11) kg·m-2. The relative mRNA expression quantity of HIF-1α, TRPV1 in nucleus pulposus were measured by quantitative real-time PCR. The contents of neurokinin 1 receptor (NK1R), nerve growth factor (NGF), vascular endothelial growth factor (VEGF) in nucleus pulposus and the serum substance P (SP) and calcitonin gene-related peptide (CGRP) were detected by enzyme linked immunosorbent assay (ELISA). The threshold of lumbar tenderness was detected by a pressure pain meter. The degree of lumbago and lumbar function were evaluated by visual analog scale (VAS) and Oswestry disability index (ODI) separately. The residual rate of postoperative lumbago and leg pain was assessed. RESULTS: The mRNA relative expression quantity of HIF-1α and TRPV1, and the contents of NK1R, NGF and VEGF in nucleus pulposus, and the levels of serum SP and CGRP before surgery in the NCT group were higher than those in the CT group(P<0.05), and those in the CT group were higher than the control group(P<0.05). At day 7 after surgery, the serum SP and CGRP levels, lumbago and leg pain VAS scores and lumbar ODI index in two LDH groups were lower than before surgery (P<0.05), and those in the NCT group were higher than the CT group(P<0.05), and the threshold of lumbar tenderness in the NCT group was lower than the CT group(P<0.05). The differences of lumbago and leg pain VAS scores, lumbar ODI index and lumbar tenderness threshold between preoperative and postoperative 7 days in the NCT group were lower than those in the CT group(P<0.05). The residual rate of lumbago and leg pain at 7 days after surgery in the NCT group was higher than that in the CT group(P<0.05). CONCLUSION: HIF-1α and TRPV1 pathway promoted the excessive production of NGF, VEGF, NK1R in nucleus pulposus and serum neuropeptides SP and CGRP, which may lead to the higher residual rate of lumbago and leg pain with non-contained lumbar disc herniation postoperative.


Assuntos
Discotomia Percutânea , Deslocamento do Disco Intervertebral , Dor Lombar , Masculino , Feminino , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Deslocamento do Disco Intervertebral/cirurgia , Fator A de Crescimento do Endotélio Vascular , Perna (Membro)/cirurgia , Peptídeo Relacionado com Gene de Calcitonina , Fator de Crescimento Neural , Resultado do Tratamento , Vértebras Lombares/cirurgia , Estudos Retrospectivos , Endoscopia , RNA Mensageiro
9.
Sci Rep ; 14(1): 5878, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467735

RESUMO

Assistive powered wheelchairs will bring patients and elderly the ability of remain mobile without the direct intervention from caregivers. Vital signs from users can be collected and analyzed remotely to allow better disease prevention and proactive management of health and chronic conditions. This research proposes an autonomous wheelchair prototype system integrated with biophysical sensors based on Internet of Thing (IoT). A powered wheelchair system was developed with three biophysical sensors to collect, transmit and analysis users' four vital signs to provide real-time feedback to users and clinicians. A user interface software embedded with the cloud artificial intelligence (AI) algorithms was developed for the data visualization and analysis. An improved data compression algorithm Minimalist, Adaptive and Streaming R-bit (O-MAS-R) was proposed to achieve a higher compression ratio with minimum 7.1%, maximum 45.25% compared with MAS algorithm during the data transmission. At the same time, the prototype wheelchair, accompanied with a smart-chair app, assimilates data from the onboard sensors and characteristics features within the surroundings in real-time to achieve the functions including obstruct laser scanning, autonomous localization, and point-to-point route planning and moving within a predefined area. In conclusion, the wheelchair prototype uses AI algorithms and navigation technology to help patients and elderly maintain their independent mobility and monitor their healthcare information in real-time.


Assuntos
Internet das Coisas , Cadeiras de Rodas , Humanos , Idoso , Inteligência Artificial , Algoritmos , Software , Desenho de Equipamento
10.
Angew Chem Int Ed Engl ; 63(15): e202319978, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38369652

RESUMO

Ethylene (C2H4) purification and propylene (C3H6) recovery are highly relevant in polymer synthesis, yet developing physisorbents for these industrial separation faces the challenges of merging easy scalability, economic feasibility, high moisture stability with great separation efficiency. Herein, we reported a robust and scalable MOF (MAC-4) for simultaneous recovery of C3H6 and C2H4. Through creating nonpolar pores decorated by accessible N/O sites, MAC-4 displays top-tier uptakes and selectivities for C2H6 and C3H6 over C2H4 at ambient conditions. Molecular modelling combined with infrared spectroscopy revealed that C2H6 and C3H6 molecules were trapped in the framework with stronger contacts relative to C2H4. Breakthrough experiments demonstrated exceptional separation performance for binary C2H6/C2H4 and C3H6/C2H4 as well as ternary C3H6/C2H6/C2H4 mixtures, simultaneously affording record productivities of 27.4 and 36.2 L kg-1 for high-purity C2H4 (≥99.9 %) and C3H6 (≥99.5 %). MAC-4 was facilely prepared at deckgram-scale under reflux condition within 3 hours, making it as a smart MOF to address challenging gas separations.

11.
Neural Netw ; 173: 106177, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38382398

RESUMO

The Koopman operator has received attention for providing a potentially global linearization representation of the nonlinear dynamical system. To estimate or control the original system, the invertibility problem is introduced into the data-driven modeling, i.e., the observables are required to be reconstructed the original system's states. Existing methods cannot solve this problem perfectly. Only linear or nonlinear but lossy reconstruction can be achieved. This paper proposed a novel data-driven modeling approach, denoted as the Extended Dynamic Mode Decomposition with Invertible Dictionary Learning (EDMD-IDL) to address this issue, which can be interpreted as a further extension of the classical Extended Dynamic Mode Decomposition (EDMD). The Invertible Neural Network (INN) is introduced in the proposed method, where its inverse process provides the explicit inverse on the dictionary functions, thus allowing the nonlinear and lossless reconstruction. An iterative algorithm is designed to solve the extended optimization problem defined by the Koopman operator and INN by combining the optimization algorithm based on the gradient descent and the classical EDMD method, making the method successfully obtain the finite-dimensional approximation of the Koopman operator. The method is tested on various canonical nonlinear dynamical systems and is shown that the predictions obtained in a linear fashion and the ground truth match well over the long-term, where only the initial status is provided. Comparison experiments highlight the superiority of the proposed method over the other EDMD-based methods. Notably, a typical example in fluid dynamics, cylinder wake, illustrates the potential of the method to be further extended to the high-dimensional system with tens of thousands of states. By combining the Proper Orthogonal Decomposition technique, nontrivial Kármán vortex sheet phenomenon is perfectly reconstructed. Our proposed method provides a new paradigm for solving the finite-dimensional approximation of the Koopman operator and applying it to data-driven modeling.


Assuntos
Algoritmos , Tetranitrato de Pentaeritritol , Aprendizagem , Dinâmica não Linear , Redes Neurais de Computação
12.
Front Microbiol ; 15: 1298106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380105

RESUMO

Porcine circovirus type 2 (PCV2) is the etiological agent of PCV2-associated diseases that pose a serious threat to the swine industry. PCV2 capsid (Cap) protein has been shown to interact with DEAD-box RNA helicase 21 (DDX21), an important protein that regulates RNA virus replication. However, whether the interaction between DDX21 and the PCV2 Cap regulates PCV2 replication remains unclear. Herein, by using western blotting, interaction assays, and knockdown analysis, we found that PCV2 infection induced the cytoplasmic relocation of DDX21 from the nucleolus in cultured PK-15 cells. Moreover, the nuclear localization signal (NLS) of PCV2 Cap interacted directly with DDX21. The NLS of PCV2 Cap and 763GSRSNRFQNK772 residues at the C-terminal domain (CTD) of DDX21 were essential for the dual interaction. Upon shRNA-mediated DDX21 depletion in PK-15 cells, we observed impaired PCV2 replication via a lentivirus-delivered system, as evidenced by decreased levels of viral protein expression and virus production. In contrast, the replication of PCV2 increased in transiently DDX21-overexpressing cells. Our results indicate that DDX21 interacts with PCV2 Cap and plays a crucial role in virus replication. These results provide a reference for developing novel potential targets for prevention and control of PCV2 infection.

13.
Front Vet Sci ; 11: 1321486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362303

RESUMO

Introduction: This study was carried out to investigate the effects of mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacement soybean meal on growth performance, nutrient apparent digestibility, serum inflammatory factors and immunoglobulins, serum biochemical parameters, intestinal permeability, short-chain fatty acid content, and gut microbiota of finishing pigs. Methods: A total of 54 pigs with an average initial weight of 97.60 ± 0.30 kg were selected and randomly divided into 3 groups according to their initial weight, with 6 replicates in each group and 3 pigs in each replicate. The trial period was 26 days. The groups were as follows: control group (CON), fed corn-soybean meal type basal diet; Corn-soybean-mixed meal group (CSM), fed corn-soybean meal-mixed meal diet with a ratio of rapeseed meal, cotton meal, and sunflower meal of 1:1:1 to replace 9.06% soybean meal in the basal diet; Corn-mixed meal group (CMM), fed a corn-mixed meal diet with a ratio of Rapeseed meal, Cotton meal and Sunflower meal of 1:1:1 to replace soybean meal in the basal diet completely. The crude protein level of the three diets was maintained at 12.5%. Results: Our findings revealed no significant impact of replacing soybean meal with the mixed meal (rapeseed meal, cotton meal, and sunflower meal) on the ADG (Average daily gain), ADFI (Average daily feed intake), and F/G (Feed gain ratio) (P > 0.05), or crude protein, crude fat, and gross energy (P > 0.05) in the diet of finishing pigs. Compared with the CON group, the serum interleukin 6 (IL-6) and interleukin 10 (IL-10) concentrations were significantly decreased in the CMM group (P < 0.05). However, there is no significant effect of the mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacing soybean meal in the diet on the serum interleukin 1ß (IL-1ß), interleukin 8 (IL-8), tumor necrosis factor-alpha (TNF-α), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations (P > 0.05). Concordantly, there is no significant effect of mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacing soybean meal in the diet on the serum antioxidant capacity, such as total antioxidant capacity (T-AOC), catalase (CAT), and malondialdehyde (MDA) levels of finishing pigs. Moreover, compared with the CON group, serum low-density lipoprotein (LDL-C) levels were significantly lower in the CSM group (P < 0.05) and their total bilirubin (TBIL) levels were significantly lower in the CMM group (P < 0.05). There is not a significant effect on serum D-lactate and diamine oxidase (DAO) concentrations (P > 0.05). The next section of the survey showed that the replacement of soybean meal with a mixed meal (rapeseed meal, cotton meal, and sunflower meal) in the diet did not significantly influence the acetic acid, propionic acid, butyric acid, valeric acid, isobutyric acid, and isovaleric acid in the colon contents (P > 0.05). Furthermore, compared with the CON group, the CMM group diet significantly increased the abundance of Actinobacteria at the phylum level (P < 0.05), U_Actinobacteria at the class level (P < 0.05), and U_Bacteria at the class level (P < 0.05). The result also showed that the CMM group significantly reduced the abundance of Oscillospirales at the order level (P < 0.05) and Streptococcaceae at the family level (P < 0.05) compared with the CON group. The Spearman correlation analysis depicted a statistically significant positive correlation identified at the class level between the relative abundance of U_Bacteria and the serum T. BILI concentrations (P < 0.05). Moreover, a significant negative correlation was detected at the order level between the relative abundance of Oscillospirales and the levels of acetic and propionic acids in the colonic contents (P < 0.05). Additionally, there was a significant positive correlation between the serum concentrations of IL-6 and IL-10 and the relative abundance of the family Streptococcaceae (P < 0.05). Discussion: This study demonstrated that the mixed meal (rapeseed meal, cotton meal, and sunflower meal) as a substitute for soybean meal in the diet had no significant negative effects on the growth performance, nutrient apparent digestibility, serum immunoglobulins, serum antioxidant capacity, intestinal permeability, short-chain fatty acid content, and diversity of gut microbiota of finishing pigs. These results can help develop further mixed meals (rapeseed meal, cotton meal, and sunflower meal) as a functional alternative feed ingredient for soybean meals in pig diets.

14.
Sci Rep ; 14(1): 4008, 2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369538

RESUMO

Triple-negative breast cancer (TNBC) is regarded as the deadliest subtype of breast cancer because of its high heterogeneity, aggressiveness, and limited treatment options. Toxoflavin has been reported to possess antitumor activity. In this study, a series of toxoflavin analogs were synthesized, among which D43 displayed a significant dose-dependent inhibitory effect on the proliferation of TNBC cells (MDA-MB-231 and HCC1806). Additionally, D43 inhibited DNA synthesis in TNBC cells, leading to cell cycle arrest at the G2/M phase. Furthermore, D43 consistently promoted intracellular ROS generation, induced DNA damage, and resulted in apoptosis in TNBC cells. These effects could be reversed by N-acetylcysteine. Moreover, D43 significantly inhibited the growth of breast cancer patient-derived organoids and xenografts with a favorable biosafety profile. In conclusion, D43 is a potent anticancer agent that elicits significant antiproliferation, oxidative stress, apoptosis, and DNA damage effects in TNBC cells, and D43 holds promise as a potential candidate for the treatment of TNBC.


Assuntos
Pirimidinonas , Triazinas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , Espécies Reativas de Oxigênio/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Apoptose , Dano ao DNA
15.
J Clin Pediatr Dent ; 48(1): 198-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239173

RESUMO

To study the values of mini-implant anchorage in orthodontics for children in the mixed dentition stage, 78 children in the mixed dentition stage who had accepted orthodontic treatment in our hospital from January 2020 to January 2021 were enrolled into this study. All children were treated with straight-wire appliance. According to their anchorages, children were divided into observation group and control group based on the random number table. Children in the control group used face-bow to control the anchorages and children in the observation group used mini-implants to control the anchorages. After treatment, the upper central incisor convex distance difference, inclination angle of the upper central incisor, displacement of the molar, gingival health, masticatory function, treatment effect and adverse reaction rate of children in two groups were compared. One year after treatment, compared with children in the control group, children in the observation group had smaller the upper central incisor convex distance difference, inclination angle of the upper central incisor, displacement of the molar, small scores of plaque index (PLI), bleeding index (BI) and gingival index (GI), stronger biting force and higher masticatory efficiency, lower adverse reaction rate during treatment, better treatment effect, higher satisfaction of orthodontic treatment. And differences of all the above indexes were statistically significant (p < 0.05). Mini-implant anchorages have good stability and directive force, and have certain values in orthodontics for children in the mixed dentition stage.


Assuntos
Procedimentos de Ancoragem Ortodôntica , Técnicas de Movimentação Dentária , Criança , Humanos , Desenho de Aparelho Ortodôntico , Assistência Odontológica , Parafusos Ósseos , Maxila
16.
BMC Plant Biol ; 24(1): 48, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38216909

RESUMO

Cultivated peanut (Arachis hypogaea L.) represents one of the most important oil and cash crops world-widely. Unlike many other legumes, peanuts absorb nitrogen through their underground pods. Despite this unique feature, the relationship between yield and nitrogen uptake within the pod zone remains poorly understood. In our pot experiment, we divided the underground peanut part into two zones-pod and root-and investigated the physiological and agronomic traits of two peanut cultivars, SH11 (large seeds, LS) and HY23 (small seeds, SS), at 10 (S1), 20 (S2), and 30 (S3) days after gynophores penetrated the soil, with nitrogen application in the pod zone. Results indicated that nitrogen application increased pod yield, kernel protein content, and nitrogen accumulation in plants. For both LS and SS peanut cultivars, optimal nitrogen content was 60 kg·hm- 2, leading to maximum yield. LS cultivar exhibited higher yield and nitrogen accumulation increases than SS cultivar. Nitrogen application up-regulated the expression of nitrogen metabolism-related genes in the pod, including nitrate reductase (NR), nitrite reductase (NIR), glutamine synthetase (GS), glutamate synthase (NADH-GOGAT), ATP binding cassette (ABC), and nitrate transporter (NRT2). Additionally, nitrogen application increased enzyme activity in the pod, including NR, GS, and GOGAT, consistent with gene expression levels. These nitrogen metabolism traits exhibited higher up-regulations in the large-seeded cultivar than in the small-seeded one and showed a significant correlation with yield in the large-seeded cultivar at S2 and S3. Our findings offer a scientific basis for the judicious application and efficient utilization of nitrogen fertilization in peanuts, laying the groundwork for further elucidating the molecular mechanisms of peanut nitrogen utilization.


Assuntos
Arachis , Nitrogênio , Arachis/genética , Nitrogênio/metabolismo , Proteínas/metabolismo , Sementes/genética , Glutamato-Amônia Ligase/metabolismo , Nitrato Redutase/metabolismo
17.
Opt Lett ; 49(2): 214-217, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194531

RESUMO

Although phosphorene quantum dots (PQDs) have gained significant attention in optoelectronics and physics due to their unique optical responses, the low-frequency electromagnetic properties of PQDs and the effects of temperature still remain largely unexplored. Herein, we investigate the temperature-dependent terahertz (THz) response of PQDs by using THz time-domain spectroscopy. Effective THz conductivity of the PQD sample is extracted based on THz measurements to analyze the charge carrier behavior. It is shown that the carriers in the PQDs can be approximated as a weakly confined Drude gas of classical and noninteracting charge particles, which are described by the modified Drude-Smith formula. Then, we also obtain the temperature dependences of the effective characteristic parameters for the charge carriers. As the temperature increases, the plasma frequency linearly enhances whereas both of the carrier diffusion time and the momentum scattering time decrease, which are akin to conventional semiconductors to a large extent. In addition, the confinement factor is closed to 1 and nearly insensitive to temperature. These results are helpful to gain an in-depth understanding of the low-frequency electromagnetic response of charge carriers in PQDs and to explore new applications in photonics and optoelectronics.

18.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255903

RESUMO

Avian metapneumovirus subgroup C (aMPV/C) causes respiratory diseases and egg dropping in chickens and turkeys, resulting in severe economic losses to the poultry industry worldwide. Integrin ß1 (ITGB1), a transmembrane cell adhesion molecule, is present in various cells and mediates numerous viral infections. Herein, we demonstrate that ITGB1 is essential for aMPV/C infection in cultured DF-1 cells, as evidenced by the inhibition of viral binding by EDTA blockade, Arg-Ser-Asp (RSD) peptide, monoclonal antibody against ITGB1, and ITGB1 short interfering (si) RNA knockdown in cultured DF-1 cells. Simulation of the binding process between the aMPV/C fusion (F) protein and avian-derived ITGB1 using molecular dynamics showed that ITGB1 may be a host factor benefiting aMPV/C attachment or internalization. The transient expression of avian ITGB1-rendered porcine and feline non-permissive cells (DQ cells and CRFK cells, respectively) is susceptible to aMPV/C infection. Kinetic replication of aMPV/C in siRNA-knockdown cells revealed that ITGB1 plays an important role in aMPV/C infection at the early stage (attachment and internalization). aMPV/C was also able to efficiently infect human non-small cell lung cancer (A549) cells. This may be a consequence of the similar structures of both metapneumovirus F protein-specific motifs (RSD for aMPV/C and RGD for human metapneumovirus) recognized by ITGB1. Overexpression of avian-derived ITGB1 and human-derived ITGB1 in A549 cells enhanced aMPV/C infectivity. Taken together, this study demonstrated that ITGB1 acts as an essential receptor for aMPV/C attachment and internalization into host cells, facilitating aMPV/C infection.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Metapneumovirus , Humanos , Animais , Gatos , Suínos , Metapneumovirus/genética , Integrina beta1/genética , Galinhas , Anticorpos Antivirais
19.
Biomolecules ; 14(1)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38254695

RESUMO

Recent advances in cochlear implantology are exemplified by novel functional strategies such as bimodal electroacoustic stimulation, in which the patient has intact low-frequency hearing and profound high-frequency hearing pre-operatively. Therefore, the synergistic restoration of dysfunctional cochlear hair cells and the protection of hair cells from ototoxic insults have become a persistent target pursued for this hybrid system. In this study, we developed a composite GelMA/PEDOT:PSS conductive hydrogel that is suitable as a coating for the cochlear implant electrode for the potential local delivery of otoregenerative and otoprotective drugs. Various material characterization methods (e.g., 1H NMR spectroscopy, FT-IR, EIS, and SEM), experimental models (e.g., murine cochlear organoid and aminoglycoside-induced ototoxic HEI-OC1 cellular model), and biological analyses (e.g., confocal laser scanning microscopy, real time qPCR, flow cytometry, and bioinformatic sequencing) were used. The results demonstrated decent material properties of the hydrogel, such as mechanical (e.g., high tensile stress and Young's modulus), electrochemical (e.g., low impedance and high conductivity), biocompatibility (e.g., satisfactory cochlear cell interaction and free of systemic toxicity), and biosafety (e.g., minimal hemolysis and cell death) features. In addition, the CDR medicinal cocktail sustainably released by the hydrogel not only promoted the expansion of the cochlear stem cells but also boosted the trans-differentiation from cochlear supporting cells into hair cells. Furthermore, hydrogel-based drug delivery protected the hair cells from oxidative stress and various forms of programmed cell death (e.g., apoptosis and ferroptosis). Finally, using large-scale sequencing, we enriched a complex network of signaling pathways that are potentially downstream to various metabolic processes and abundant metabolites. In conclusion, we present a conductive hydrogel-based local delivery of bifunctional drug cocktails, thereby serving as a potential solution to intracochlear therapy of bimodal auditory rehabilitation and diseases beyond.


Assuntos
Células Ciliadas Auditivas , Hidrogéis , Humanos , Animais , Camundongos , Hidrogéis/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Comunicação Celular , Transdução de Sinais
20.
Cell Death Dis ; 15(1): 86, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267403

RESUMO

The NLRP3 inflammasome plays an important role in protecting the host from infection and aseptic inflammation, and its regulatory mechanism is not completely understood. Dysregulation of NLRP3 can cause diverse inflammatory diseases. HECTD3 is a E3 ubiquitin ligase of the HECT family that has been reported to participate in autoimmune and infectious diseases. However, the relationship between HECTD3 and the NLRP3 inflammasome has not been well studied. Herein, we show that HECTD3 blocks the interaction between NEK7 and NLRP3 to inhibit NLRP3 inflammasome assembly and activation. In BMDMs, Hectd3 deficiency promotes the assembly and activation of NLRP3 inflammasome and the secretion of IL-1ß, while the overexpression of HECTD3 inhibits these processes. Unexpectedly, HECTD3 functions in an E3 activity independent manner. Mechanically, the DOC domain of HECTD3 interacts with NACHT/LRR domain of NLRP3, which blocks NLRP3-NEK7 interaction and NLRP3 oligomerization. Furthermore, HECTD3 inhibits monosodium urate crystals (MSU)-induced gouty arthritis, a NLRP3-related disease. Thus, we reveal a novel regulatory mechanism of NLRP3 by HECTD3 and suggest HECTD3 could be a potential therapeutic target for NLRP3-dependent pathologies.


Assuntos
Artrite Gotosa , Inflamassomos , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Inflamação , Interleucina-1beta , Quinases Relacionadas a NIMA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...